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Generally, various types of ultra-subharmonic motions can be observed in numerical
simulations of periodically forced, non-linear oscillators. However, theoretical expositions
have been provided only for lower-order subharmonics and superharmonics. For a general
class of non-linear oscillators, ultra-subharmonic resonances of order 3/2 and 2/3 are
analyzed by applying the higher-order averaging method. The occurrence of
ultra-subharmonic motions is theoretically explained, and bifurcation behavior near the
ultra-subharmonic resonances is described. The tedious computations required here are
implemented by using a package of the computer algebra system, Mathematica, recently
developed by the author and his co-worker. Moreover, the fourth-order subharmonic and
superharmonic resonance behavior is discussed. An example is presented for the Duffing
oscillator with double well potential, and numerical simulation results are given to
demonstrate the theoretical results.
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1. INTRODUCTION

Consider periodically forced oscillators of the form
X 4+ 0x + f(x) = 7 cos wt, (1)

where 9, 7 and o are positive constants, and f'is a sufficiently smooth function of x. When
0 =7 =0, equation (1) is referred to as the unperturbed system in the following. The
unperturbed phase plane has great variety depending on the form of the function f (see
Figure 1 of reference [1]). In particular, if f(x,) = 0 and df{(x,)/dx > 0, then there exists
a center at (x, X) = (xo, 0) in the phase plane.

If one concentrates on the dynamics near the unperturbed center (x,,0), then it is
convenient to introduce a local co-ordinate y such that x = gy + x,, where 0 < e« 1. So
equation (1) can be rewritten as a weakly non-linear oscillator

J+oy+wiy+ Y a1yt =7y coswt, 2

j=1

where y = j/e, w3 = a; > 0 and
a; === (X0), j=12.... 3)

Thus, one only has to study equation (2) in order to discuss the dynamics of equation (1)
near the center. Especially, if the ratio of the forcing frequency w to the natural frequency
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@y 1s close to a rational number, then resonance behavior may occur in equation (2) and
hence near the unperturbed center in equation (1).

Many physical and engineering problems can be modelled as systems of the form (1)
or (2), and numerous theoretical and numerical studies for them have been done. In
particular, the third- or lower-order subharmonic and superharmonic resonances as well
as the primary resonance (near the unperturbed centers for equation (1)) were analyzed
by using the second-order approximation of perturbation techniques such as the methods
of averaging and multiple scales. So it was shown that third- or lower-order subharmonic
and superharmonic motions occur as well as resonant harmonic motions. See references
[1]H3] for the details. Moreover, ultra-subharmonics as well as higher-order subharmonics
and superharmonics near the associated resonances were observed in numerical
simulations (see, e.g., references [4, 5]). However, these numerical observations have not
been theoretically explained, unlike lower-order subharmonic and superharmonic
resonances.

In this paper a theoretical exposition for the occurrence of ultra-subharmonics in general
systems of the form (1) is presented. Moreover, the higher-order subharmonic and
superharmonic resonance behavior is discussed. To this end, the higher-order averaging
method is applied to equation (2) after some changes of co-ordinates. The details on the
higher-order averaging procedure, in which the higher-order terms can be computed by
the Lie transform algorithm [6, 7], can be found in reference [8] while its basic idea was
described in references [6, 7,9, 10]. A useful package of the computer algebra system,
Mathematica [11], for performing tedious computations required in application of
higher-order averaging was also developed in reference [8]. Here the necessary
computations are implemented by using the package. It should also be noted that a similar
computer algebra program of MACSYMA was available in reference [12] although it uses
a different, primitive algorithm.

This paper is arranged as follows. In section 2 an outline of the higher-order averaging
method is presented and a general recipe for application of averaging to weakly non-linear
systems such as equation (2) near ultra-subharmonic resonances is briefly mentioned. In
sections 3 and 4, according to the recipe of section 2, the ultra-subharmonic resonances
of order 3/2 and 2/3 near the unperturbed center in equation (1) are discussed by carrying
out third-order averaging procedures for equation (2). In section 5, similar third-order
averaging analyses are performed for the fourth-order subharmonic and superharmonic
resonances. In section 6 an example is presented for the Duffing oscillator with double well
potential, and numerical simulation results are given to verify the theoretical results. In
conclusion, a summary and some comments are stated in section 7.

2. HIGHER-ORDER AVERAGING

The higher-order averaging method is first reviewed. See reference [8] for the details.
Consider systems of the form

x = ef(x, wt, &), x e R, 0<exl, 4)

where f(x, 0, ¢) € R" is analytic and of period 2z in 0. f(x, 0, ¢) can be expanded in power
series of &:

o gm—l

f(x,0,¢) =Y o T (%, 0), (%)

m=1

where f, (x,0), m=1,2,..., are also analytic and of period 2x in 6.
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Let f(y,0), m=1,2,..., be functions such that they are computed as
f(y, 0) = £y (y, 0) by recursive relations,

£ (v, 0) = 1. (y, 0),

m—2
£, (y.0) = £ (y. 0) + Z Cr 'Ly, ’ff,?),,-,l (y, 0),

i=0

m—1
£ () =0 &0+ Y ¢ 'L £, (y,0) forl>2, (6)
i=0
where
Al) Y ()] awm
ﬂn—[(ya 0)_fﬂx—l(y, 0)_('0 00 (ya 0) for l> 17 (7)
with
k!
¢ = =Y and  L: g(y, 0) = D, g(y, 0)w: (y, 0) — D, w: (y, 0)g(y, 0). ®)

Using a general theory of the Lie transform [6,7], one can show that under a
transformation of the form

ny

X=y+ Y W,y o), ©)

m=0

equation (4) is written as

y — Z %T‘(m)(y) + 8”1ﬂ+1g(”1)(y’ (,Ol, 8), (10)
m=1 :
where
_ 1 21
m) _ (m)

and g™ (y, 0, ¢) is of period 27 in . Moreover, the transformation (9) is given by

a m Tm
0 T (v, 0) =Ty, 0), (12)
where
f(y, 0) = £y, 0) — T'(y). (13)

When the higher-order term of O(e™*") is eliminated, equation (10) becomes

My em
y= f(y), (14)
mgl m/

which is referred to as the m, -th order averaged system for equation (4).
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The first-order averaging theory [9, 10, 13] can easily be extended to the case of
higher-order averaging. In particular, a solution x(z) of the original system (4) can be
expressed as

m
&

XO=F0+ X Lw, (0. 1) + 06), (15)

m=1

by a solution j(¢) of the averaged system (14) on the time scale of O(1/e) unless the
first-order term is zero. If the first-order term is zero, a different estimation is obtained
(see references [10, 14]; see also section 3). Hyperbolic fixed points in the averaged system
correspond to hyperbolic periodic orbits in the original system, the local stable and
unstable manifolds of which can be also approximated by those of the corresponding
hyperbolic fixed points in the averaged system. Moreover, hyperbolic periodic orbits in the
averaged system correspond to normally hyperbolic invariant 2-tori in the original system
and so on.

Consider next periodically forced, weakly non-linear single-degree-of-freedom systems
of the form

X+ i x = eF(x, X, wt, &), (16)
where F(x, x,0,e)eR is analytical and 2zm-periodic in 6. Assume that an
ultra-subharmonic resonance occurs such that w/w, = k// with k and / relatively prime

integers, and set

§Q = (Po? — Kwd)/k (17)

with j > 1 an integer. Then, using the van der Pol transformation

cos ! wt —i sin ! wt X
“ k o Mk
B —sinlwt —Ecosla)t X 4
v k lo “ &

in equation (16), one obtains

. .

' = —ek[sf’le+F(‘c X, wt, ¢)] T

. n lo T ’ (19)
v cos%wt

where x and x are expressed by u# and v through equation (18). Equation (19) has the form
of equation (4), and hence the averaging method is applicable. See also section 4 of
reference [8] for a treatment of multi-degree-of-freedom systems. The package of
Mathematica developed in reference [8], “haverage.m”, includes two programs which
implement the higher-order averaging procedure for equation (4) and the van der Pol
transformation for multi-degree-of-freedom systems.
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3. ULTRA-SUBHARMONICS OF ORDER 32
Consider now the ultra-subharmonic resonance of order 3/2 in equation (2) and
equivalently in equation (1). Suppose that w/wy~ 3/2 and set &Q = (4w* — 9wi)/9.
Replace 9 by &5 and assume & and 7y to have values of O(1). By letting

z=y+ I coswt, I =y/(w*— a}), (20)
equation (2) becomes
Z+wiz= —c¢ar(z — I cos wt)’ — &’a; (z — I cos wt)’
—&ay (z — I cos wt)* + 6(Z + ol sin wt)] + O(&*). (21)

The van der Pol transformation (18) with k = 3 and / = 2 is used to transform equation
(21) into a system of the form (4) and the higher-order averaging method is applied. Using
the package ““haverage.m”, one obtains the third-order averaged system

u=(2w) [(Asn T'* +3 Qv + Byp (1 + 0] + (620) (—dwu + 2Csp IMuw),
b= (20) [— (432 T* + 3 Qu — Bsp (1 + vH)u] + (6°2w) [—dwv + Csp T(1? — v?)],
(22)
where
Ap=F (@ |o’) —ja,  Bp=%(a/0°) —ia,
Cip =50 (@5 ') — 55 (@ a3 J0°) + 5 as. (23)

Note that the first-order term is zero in the averaged system (22). The transformation (9)
is also given by

W, (u, v, 0) = Wjo (9) + Wi (9)14 —+ Wi, (Q)U —+ W3 (0)142 + Wiy (0)1)2 + Wis (G)UU
wa (1, v, 0) = W (0) + wa (D)u + W (0)0 + W3 (0)1? + Wau ()07 + Was (O)uw
+ Wi (0) + Wy (0)0° + was (0)Pv + Wa (0)ur?, (24)

where 0 = wt/3. See the Appendix for the expressions of w; (6).
The averaged system (22) has a trivial equilibrium at (u, v) = (0, 0), which is always
stable. The equilibrium corresponds to a harmonic orbit in equation (2),

9(12 Fz + 9(12 Fz
8w? 64w?

y= —1T cos wf + 8<— cos 2wt> + 0(&), (25)

and a harmonic orbit in equation (1),

9612 Fz + 9a2 Fz
8w? 64w?

x = xo — &l cos wt + 82<— cos 2wl> + O(&). (26)

These expressions are easily obtained from equation (24) and also verified by using a

regular perturbation technique. Note that the approximate solution in equation (2) can

be obtained only to O(e) since the first-order averaged term is zero (cf. equation (15)).
In polar co-ordinates, r = \/u* + v* and ¢ = arctan (v/u), equation (22) becomes

F = (¢/2w) [—dwr + Cy, I sin 3¢,
¢ = (&20) [ (432 I + 3 Q) — Bsp 1] + (£/20)Cy I'*r cos 3¢. 27)
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The package “haverage.m” can also be used for the derivation of equation (27). Solutions
of equation (27) with r = 0 correspond to the trivial equilibrium of equation (22).
Suppose that B;,, Ci» # 0 and that
;2 F4[—4Bg‘x2 (A}\Q I“Z + % Q) + 82C§f2 F4] — 43;2 52(1)2 > 0,
ie.,

—Bgfz Q> %A}Q Bgfz F2 + % (Bng 52(,02/6%,2 F4) — é 82C§ﬁ2 FA. (28)

Then equation (27) has fixed points with r > 0 at (r, ¢) = (r«, ¢+ + 2jn/3), j=0, 1, 2,
where

ry = (1/ﬁ|33,s2 D{[—2Bsp (Asp T* +3 Q) + 2C3, T]

+ o3/ C T[— 4B (A:p T2 +3 Q) + £C3, '] — 483, 80} (29)
and
¢, =tarctan (edw /[(Azp I'* + 2 Q) + By ri)). (30)
Note that if condition (28) holds, then the first term in the brace of equation (29),
—2B3p (Asp T? +3Q) + *C3, I'*, is  positive. The fixed points (ro, ¢, + 2jn/3),
j=0,1,2, are stable and the others are unstable. Each triple of fixed points
(r+, ¢+ +2jm/3), j =0, 1, 2, corresponds to a single ultra-subharmonic orbit of order 3/2
in equation (1),
X =xo+ e[—T cos wt + r: cos Gwt + ¢.)] + O(&?), (31)
with the same stability type.
The two triples of fixed points appear or disappear at three saddle-node bifurcations
[13, 15] when
Q= —2 Ay T? — 2 (Byy 00 Cly TY) + £ eX(C3, T By). (32)

By noting that w = 3 wy + O(&?), and w{ = a,, the saddle-node bifurcation set (32) can be
expressed as

Q= —24,,T*—3 (a1 B;p, 0} Coa T + O(&), (33)
where
Ay =15 (@3 |a) — 3 as, By, =3(a jar) — 3 as,
Csp =G (@3 Ja)) — 5 (@ a; [a) + 3 aa. (34)

Equation (33) also represents an approximate saddle-node bifurcation set in equation (1)
at which stable and unstable ultra-subharmonic orbits of order 3/2 given by equation (31)
appear or disappear.
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(a) ; (b) (c)

SN
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(d) ; (e) ()

312
SN

Q

Figure 1. Saddle-node bifurcation sets near the ultra-subharmonic resonance of order 3/2 in equation (1) when
the control parameters are I and Q. (a) 43> < 0 and Bs; < 0; (b) 43> = 0 and Bs» < 0; (¢) A3 > 0 and Bs» < 0;
(d) 43» < 0 and Bsp > 0; (€) A3 =0 and Bsp > 0; (f) 43> > 0 and Bs, > 0. SN and SN, respectively, denote
super- and subcritical saddle-node bifurcations when I' (i.e., the forcing amplitude 7) is changed. The broken
curves labeled a and b, respectively, represent the graphs of Q = —24;,I"> and Q = —3(a1B326%/C3.T?).

The approximate saddle-node bifurcation curves in the (2, I')-space are shown in
Figure 1, and the associated bifurcation diagrams for the averaged system (27) are shown
in Figure 2. Here I'S, = % (a) By, 8*/ 45, C3p) and Q3, = —3 (ay 43, B 6%/C3,,). Note that the
bifurcation curves are similar to those of third-order subharmonics (cf. Figure 6 of reference
[1]). When I is increased while the other parameters are fixed (or equivalently only the
forcing amplitude § is changed), both supercritical and subcritical saddle-node bifurcations
can occur if A3, By, > 0, and only supercritical saddle-node bifurcations can occur if
As;, By, < 0. The phase portraits of the averaged system (22) are also sketched in Figure 3
for some parameter values. Here the numerical computations were performed by using a
software called “Dynamics™ [16].

(a) (b) (c)
SN_

r

Figure 2. Bifurcation diagrams for the averaged system (27) when the control parameter is I'. (a) A3 < 0,
B <0,Q > Qsp,0r Asp > 0, By > 0, Q < Qs (b) Asp = 0, B:pQ < 0; (c) 432B32 < 0. Note that no bifurcations
occur in other cases. The points with r > 0 correspond to ultra-subharmonics of order 3/2 in equation (1). SN
and SN’ denote super- and subcritical saddle-node bifurcations. Stable and unstable orbits are also shown as
solid and broken lines, respectively.
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4. ULTRA-SUBHARMONICS OF ORDER 2/3

Next consider the ultra-subharmonic resonance of order 2/3. Suppose that w/w, = 2/3,
and set £2Q = (9w? — 4w})/4. Application of the van der Pol transformation (18) with k = 2
and / = 3 and the third-order averaging method to equation (21) yields

= (2w) [(Asy; T* + 3 Q) + By (1 + v*)v] + (6%2w) (—dwu — Cyy3 ),
b= (2w) [— (A3 T* + 3 Qu — Boyy (1 + vH)u] + (6°2w) (— Caos Tu — dww),  (35)
which is expressed in polar co-ordinates as
F = (&2w) [—dwr — Cys Ir sin 2¢],
$ = (&20) [~ (423 I* + 3 Q) — By 1*] — (6%/20)Cys I cos 2¢), (36)

(b)

-3 -3

(c)

-3
-3 3

u

Figure 3. Phase portraits of the averaged system (22) for A4;, = 171/14 ~ 12:21428571, B, = 9/2( = 4-5),
Csp = 945/64( = 14765625), Q = —10 and ow = 3ﬁ/2 ~x 2-12132034. (a) ' = 0-2; (b) I’ = 0:6; (c) ' = 1-2. The
dots (@) represent stable fixed points. The parameter values are included in the cases of Figures 1(f ) and 2(a).
When I' is changed, three supercritical saddle-node bifurcations simultaneously occur at I' &~ 0-28536493 and
three subcritical saddle-node bifurcations simultaneously occur at I' & 1-1127972. Similar phase portraits are also
obtained in other cases.
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where
A =5 (@ |0°) — @, By = (a3 [0?) — 3 @,
Cop = 15 (a3 [0) — 75 (a2 a3 [0%) + 5 as. (37)

Here the package ‘“‘haverage.m” was also used. The averaged system (35) has a
trivial equilibrium at (u,v) = (0,0), which corresponds to a harmonic orbit in
equation (1),

5 2&2 F2 2a2 Fz
x = xo — &I’ cos wt + 3“(— %) 77 €08 2wt> + O(&Y). (38)
The equilibrium is stable if
(Ao T* +3 Q) > &[G T — $0?], (39)
and unstable if
(Ao T* +3 Q) < &[C33 T — d*w?). (40)

Suppose that B,;, Cy3 # 0 and that
3T —80*>0 and By [— (A 2 +2Q) +6/Cu T — Fw0’] > 0. (41)

Then equation (36) has non-trivial fixed points at (r, ¢) = (r., ¢-) and (r+, ¢+ + m),
where

re = (1/Bus) [— (s I? +2Q) + 6/ Cis T — 507 42)
and
¢+ = 1arctan (0w /[(Ays I* +3 Q) + By 13 ]). (43)

Moreover, when B,; > 0 (resp. By; <0), the fixed points (r, ¢.), (ry, ¢, + m) are
stable (resp. unstable) and the others are unstable (resp. stable). Each pair of fixed points
(re, ¢+), (re, ¢+ + m) corresponds to a single ultra-subharmonic orbit of order 2/3 in
equation (1),

X=X+ e[—T coswi+ r.cos Gor+ ¢.)] + O(e?), (44)

with the same stability type.
The two pairs of fixed points appear or disappear at two saddle-node bifurcations when

W= 0w’ =0, (45)

if — By (Ays I'* + 3 Q) > 0. On the other hand, if the first condition in equation (41) holds
and

— (A TP +2Q) + 6 /C T — 8°0* = 0, (46)

then a pitchfork bifurcation [13, 15] occurs at r =0 (i.e., (&, v) = (0, 0)) and the pair of
fixed points, (r+, ¢-), (r+, ¢+ + n), disappears or appears there. Since w = 3w, + O(&?)
and wj = a,, the saddle-node bifurcation set (45) and pitchfork bifurcation sets (46) can
be expressed as

r*=3(a0°/C3) + O(&) (47)

and

w

Q=3[4T +e/CuT* —ia 6]+ O(&), (48)

(S]]
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(a) (b) (c)

PD ||| PD’

SN SN

Irl
0 .....::.'.

2/3

(d) (e) (f)

PD' ||| PD
SN

SN T

2/3 Q2/3

Figure 4. Saddle-node and period doubling bifurcation sets near the ultra-subharmonic resonance of order
2/3 in equation (1) when the control parameters are |I'| and Q. (a) 423 < 0 and By < 0; (b) 423 = 0 and By < 0;
() /_4233 >0 and By < 0; (d) Axs < 0 and By > 0; (e) Ay =0 and By > 0; (f) 712“3 >0 and Bys > 0. PD and
PD’, respectively, denote super- and subcritical period doubling bifurcations, and SN denotes supercritical
saddle-node bifurcations when |I'| (i.e., the forcing amplitude 7) is changed. The broken curves labeled a represent
the graph of Q = —34,:I"%.

respectively, where
ZZ#3=%(G§ jar) — as, Ez;3=§(a§/a1)—%a3,
(_jzfs 2554(0% /af) —%(az a; /al) +%a4. (49)

Note that the pitchfork bifurcations correspond to period doubling bifurcations [13, 15]
of the harmonic orbit given by equation (38) to the ultra-subharmonic orbits of order 2/3
given by equation (44) in equation (1): the stability of the harmonic orbit changes (cf.
equations (39), (40) and (46)) and the ultra-subharmonic orbits appear or disappear there.
See also references [1, 3]. So equations (47) and (48), respectively, represent approximate
saddle-node and period doubling bifurcation sets for ultra-subharmonics of order 2/3 in
equation (1).

The approximate saddle-node and period doubling bifurcation curves in the
(Q, |I')-space are shown in Figure 4, and the associated bifurcation diagrams for the
averaged system (36) are shown in Figure 5. Here I';=3 (@ 6°/C35) and Q3 ;= —3 (a) 4355 6?/
C35). Note that at wf =0 mod 2n the ultra-subharmonic orbits of order 2/3 take
x=xo+&(—T +ricos¢s)+ O or x=xo+ &(—I —rscos ¢.)+ O(e?) while the
harmonic orbit takes only x = x, — eI" + O(¢*). Thus, when the forcing amplitude 7 is
increased while the other parameters are fixed, the stable and unstable ultra-subharmonic
orbits appear or disappear in several manners, depending on the parameter values: they
are created at supercritical saddle-node or period doubling bifurcations, and annihilated
at subcritical period doubling bifurcations. The phase portraits of the averaged system (35)
are sketched in Figure 6 for some parameter values. Again, the software ““Dynamics’ was
used to draw these pictures.
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Analyses similar to those of the preceding and this sections may also reveal other purely
ultra-subharmonic resonance motions such that w/w, ~ k/I/ with k, [ > [ relatively prime
integers. However, application of third- or fourth-order averaging to these cases only yields
uninteresting or insufficient averaged systems: they have only trivial equilibria or they are
degenerate. So fifth- or higher-order averaging is required for such analyses. Some results
on these ultra-subharmonic resonances will also be reported elsewhere.

5. HIGHER-ORDER SUBHARMONICS AND SUPERHARMONICS

It is plausible to consider that the higher-order averaging method can shed light on not
only purely ultra-subharmonic resonance motions, but also higher-order subharmonic and
superharmonic resonance motions. In this section, to demonstrate its usefulness in the
latter cases, fourth-order subharmonic and superharmonic resonances are discussed by
using the third-order averaging procedure. Fifth- or higher-order subharmonic and
superharmonic resonances can also be similarly analyzed although fourth- or higher-order
averaging is required.

5.1. FOURTH-ORDER SUBHARMONICS

Consider the fourth-order subharmonic resonance, w/w,~4, and set
£2Q = (w* — 16w})/16. Application of the van der Pol transformation (18) with k = 4 and

(a) (b) (c)

()

I

Figure 5. Bifurcation diagrams for the averaged system (36) when the control parameter is |I'|. (a) 42 < 0,
Ezg,z < O, Q> .Qz;z or 7’23 > 0, Pzg > 0, Q< Qzez; (b) 712@ = 0, Ez;,z < O, Q<0 or Zz;} = O, Bz“} > 0, Q> 0; (C)
A3 =0,By3<0,2>00r A3 =0, B3> 0,2 <0;(d) 425> 0, B3 < 0, 2 < Q3 0r A3 < 0, B3 > 0, Q > Q33
(€) A3>0, Bys<0, Q> or A<0, By;>0, Q< Qs The points with r>0 correspond to
ultra-subharmonics of order 2/3 in equation (1), while the points with r = 0 correspond to harmonics. PF and
PF’, respectively, denote super- and subcritical pitchfork bifurcations. See also the caption of Figure 2.
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3 2
(a)
-3 -2
-3 3 -2 2
BN
1 1
() (d)
-1 -1
-1 1 -1 1
u

Figure 6. Phase portraits of the averaged system (35) for A»s = 59/16( = 3-6875), B,z =2, Cys = —1315/
1688 ~ —0-48921131, Q = —15 and dw = 2,/2/3 ~ 0-94280904. (a) ' = —1; (b) ' = —1'4; (c) [ = —1:65; (d)
I' = —2. These parameter values are included in the cases of Figures 4(f) and 5(a). When |I'| is changed, two
supercritical saddle-node bifurcations simultaneously occur at |I'| & 1-2447607, and subcritical pitchfork
bifurcations occur at |[I'| &~ 16310537 and at |I'| ~ 1:66351311. See also the caption of Figure 3.

/=1 and the third-order averaging method to equation (21) yields
1= (e*2w) [(Asy T'* + 4Q)v + By (1 + v*)0] + (¢*°)2w) [—dwu — Cyy I (Bu* — v*)v],

6= (&*2w) [— (A4 T* + 4Q)u — By (1 + vH)u] + (&°2w) [—dwv — Cyy T' (1 — 30*)u],
(50)

which is expressed in polar co-ordinates as
i = (&2w) [—dwr — Cyi I'r’ sin 4],

b = (220) [— (Air T + 4Q) — Buy 1] — (£9/20)Cyy T cos 4¢b, (51)
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where
Ay =8 (a3 |w*) — 6as, By =12 (a3 |w?) — 3as,
Ciy =2 (a3 Jo*) + 40(az a3 |0?) + 2ay. (52)

The averaged system (50) has a trivial equilibrium at (u,v) = (0, 0), which is always
stable and corresponds to a harmonic orbit in equation (1),

8a, I 8a, I'?
X = xo — &I’ cos wt + 32<— 02)2 632a)2 cos 2a)t> + O(&). (53)
If B, Cap #0,
— By (Auy T2 + 4Q) > 0 (54)
and
C:\ T(Aus T? + 4Q) > B, 80’ — £2C2, 60, (55)

then equation (51) has non-trivial fixed points at (r, ¢) = (r+, ¢+ + jn/2), j=0,1,2,3,
where

1
o {B—sCF =B T740)
1/2
+ 63/(Con I (Agy I + 4QY — B}, 80 + £2C5, Fzézcoz]} (56)
and
¢, = jarctan (—dw/[(As T'* + 4Q) + Buy 11)). (57)

The fixed points (r., ¢, + jn/2), j=0,1,2,3, are stable and the others are unstable.
Each set of fixed points corresponds to a single fourth-order subharmonic orbit in
equation (1),

X=X+ &[—T coswt+ r.cos (Gor+ ¢.)] + O(e?), (58)

with the same stability type. The two sets of fixed points appear or disappear at four
saddle-node bifurcations when condition (54) holds and

2 T4 TP + 4Q) = B, 80 — &C3, T8, (59)

Note that if condition (55) holds, then equality does not hold instead of inequality in
equation (55) since By # 0. By using the relation w = 4ﬂ+ 0(¢?), the saddle-node
bifurcation set (59) can be expressed as

Q=14 " — Ja By 8/|Cip IT" + O(%), (60)

which represents an approximate saddle-node bifurcation set of fourth-order subharmonic
orbits, where

Z4;1 =5 (a3 |a)) — 6as, By = $(a Jar) — 3as,

64;1 =§(a§ /(1]2) +%(d2 as /a1)+2a4. (61)
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(@) : (b) (c)

4/1 SN

(d) : (e) )

4/1

SN

7

Io) Qin

Figure 7. Saddle-node bifurcation sets near the fourth-order subharmonic resonance in equation (1) when the
control parameters are I" and Q. (a) 441 < 0 and By < 0; (b) A4y = 0 and By < 0; (c) Asn > 0 and By < 0; (d)
Asr <0 and By > 0; (€) A4y = 0 and By > 0; (f) A4n > 0 and Bay > 0. The broken curves labeled @ and b,
respectively, represent the graphs of @ = —14.,,I* and Q = 7(\/;11_?4‘15/\@‘1\1"). See also the caption of
Figure 1.

Figures 7 and 8, respectively, show the approximation saddle-node bifurcation sets (60)
in the (Q, I')-space and associated bifurcation diagrams for the averaged system (51). Here
Iy =2(Jai By 6/Asn |Cy |) and Q) = —% (@) Asy Biy 6°/C3y). Thus, the bifurcation
curve is similar to those of third-order subharmonics and ultra-subharmonics of order 3/2
(cf. Figure 6 of reference [1] and Figure 1): when 7 is increased, fourth-order subharmonics
appear or disappear at supercritical or subcritical saddle-node bifurcations. The phase
portraits of the averaged system (50) drawn by the software “Dynamics” are also shown
in Figure 9.

5.2. FOURTH-ORDER SUPERHARMONICS

Next consider the fourth-order superharmonic resonance, w/w,~ 1/4, and set
£2Q = 16w°> — wi. Application of the van der Pol transformation (18) with k = 1 and / = 4

(a) (b) (c)
SN

SN

r

Figure 8. Bifurcation diagrams for the averaged system (51) when the control parameter is I'. (a) 441 <0,
By <0, Q> Quu, or Ay >0, By >0, Q < Qup; (b) Aan = 0, BinQ < 0; (¢) AanBan < 0. The points with r > 0
correspond to fourth-order subharmonics in equation (1). See also the caption of Figure 2.
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3 2

()

u

Figure 9. Phase portraits of the averaged system (50) for Asy =9, Bay = 12, Can = 15/2(=7-5), 2 = —6 and
ow = 4\/5 ~x 5:65685425. (a) I' = 0-3; (b) I' = 0-7; (c) I' = 2. These parameter values are included in the cases
of Figures 7(f ) and 8(a). When I is increased, four supercritical saddle-node bifurcations simultaneously occur
at I' ~ 040122646 and four subcritical saddle-node bifurcations simultaneously occur at I' ~ 1-7953490. See also
the caption of Figure 3.

and the third-order averaging method to equation (21) yields
u=(2w) [(Ays I'* + § Q)v + By (1 + v*)v] — (8°2w)dwu,
6= (&20) [— (A I'* + 1 Qu — By (1 + v)u] + (6420) (—dwv + Cis T*),  (62)
which is expressed in polar co-ordinates as
P = (&2w) [—dwr + Ciu I'*sin ¢],

d = (20) [— (A1 T +1Q) — B,y 1] + (63/20)Cy1s T* cos ¢/r, (63)
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where
Ap=g% (@ [0") —5a,  Bu=s5(a/o’)—ia,
Cis = 355 (@3 [0*) — 555 (@2 @3 |0*) + 55 aa. (64)

Equations (62) and (63) have the same forms as the averaged systems for equation (1)
near the primary resonance. See section 2.1 of reference [1]. Therefore, an analysis similar
to that given there reveals the dynamical and bifurcation behavior in equations (62)
and (63).

Suppose that By # 0. Let r, be a solution of the algebraic equation

(85(07‘)2 + [(Aly‘4 I"Z + % Q)r + B1ﬁ4 }’3]2 = (8C1;4 F4)2 (65)
and let
¢o = arctan (edw /[(Ais T* + 3 Q) + Biur3]), (66)

then (ro, ¢po) is a fixed point of equation (63) and corresponds to a fourth-order
superharmonic orbit in equation (1),

X =X+ &[—T cos wt + rocos (4wt + ¢o)] + O(&?). 67)
The fixed points appear or disappear at a saddle-node bifurcation when

82C]2f4 FS = {—2(A|Je4 FZ + % Q) [(AIM F2 —+ % Q)Z + 98252(1)2]

+ 2[(A1u I + § Q) — 36°0°w’ 1} /27 Bya. (68)
The saddle-node bifurcation sets (68) can be expressed as
ECH Tt = =200 (Aiu I+ § Q)/Bis + O(e) (69)
and
ECH T =[—4(A41s I + 3 Q) — 96°0°w (A1 T* + 5 Q)1/27Byjs + O(&%), (70)
ie.,
Q= —44,,T*— 64B,, C., T)a, 6* + O(&?) (71)
and
Q= —44,,T+ O(&), (72)
where
Ay =354 jan) — 3 as, By =54 |ar) — 15 as,
Ciu =5 (@ [a}) — 5 (@ as ja) + 5 au. (73)

Here the relation o = %\/;1 was used. Note that (4,4 I +  Q)* = 3:20°w? by equation
(68), so that

‘= + %7@ eay” 53/§1;‘4 @;43 (74)
where the upper choice of the sign is taken for B, > 0 and the lower choice for By, < 0.
Equations (71) and (72) also represent approximate saddle-node bifurcation sets of
fourth-order superharmonic orbits.
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(a) (b) (c) SN
SN'
SN'
SN SN :
_ Q
SN (®) ® e
SN’
SN'
SN SN
Q

Figure 10. Saddle-node bifurcation sets near the fourth-order superharmonic resonance in equation (1)
when the control parameters are |I'| and Q. (a) Ais <0 and Bys < 0; (b) Ays =0 and Bis < 0; (c) Aya >0
and By < 0; (d) 4ix <0 and By > 0; (¢) Aia =0 and Bia > 0; (f) A1a > 0 and Bis > 0. See also the caption
of Figure 1.

Figures 10 and 11, respectively, show the approximation saddle-node bifurcation sets
in the (2, |I'|)-space and associated bifurcation diagrams for the averaged system (63).
Here I'Yy = —& (a1 A1y 6*/Bis Ciy) and Qj, = 2 (a} 45, 6*/B, Ciy). Thus, when 7 is
increased, fourth-order superharmonics are created at a supercritical saddle-node
bifurcation and annihilated at a subcritical saddle-node bifurcation like third- or
lower-order superharmonics near the associated resonances, but the bifurcation set
structure is a little different from those near third- or lower-order superharmonic
resonances (cf. reference [1]). The phase portraits of the averaged system (62) drawn by
the software “Dynamics” are also shown in Figure 12.

(a) (b) (c)

Ir

Figure 11. Bifurcation diagrams for the averaged system (63) when the control parameter is |I'|. (a) 414 < 0,
Bis<0,Q>0,0r Aju>0, Bis >0, Q < 0; (b) one of the following four conditions holds: (i) Ais = 0, Bix <0,
Q> O7 (11) Zm < O, BM > O, Q< 0, (111) 1711‘4 > O, 31‘4 < 0, Q< Q|“4; (IV) ZM < 0, EM > 0, Q> .Q1‘4; (C) 1711‘4 > O,
Biu<0, Qu<Q<0or 41u<0, Biu>0, 0<Q < Qiu. The points with r > 0 correspond to fourth-order
superharmonics in equation (1). See also the caption of Figure 2.
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3 3
(a) (b)

-3 -3

(c)

-3
-3 3

u

Figure 12. Phase portraits of the averaged system (62) for A4 = 37/28 ~ 1-:32142857, Bis = 3/4( = 0-75),
Cys = 285/112( = 2-54464286), Q@ = —15 and dw = ﬁ/4 ~ 0-35355339. (a) I'=—0'5; (b) I'=—1-1; (¢)
I' = —1-5. These parameter values are included in the cases of Figures 10(f) and 11(a). When I is increased,
a supercritical saddle-node bifurcation occurs at I' &~ 0-72756049 and a subcritical saddle-node bifurcation occurs
at I' ~ 1-3203928. See also the caption of Figure 3.

6. AN EXAMPLE

To illustrate the above theoretical results, the Duffing oscillator with double well
potential,

X 4 0x — x + x* = 7 cos wt, (75)

i.e., the case of f(x) = —x + x7%, is studied as an example. The unperturbed system has two
centers at (x, x) = (+1, 0). The third- or lower-order subharmonic and superharmonic
resonance motions near the centers in equation (75) as well as the primary resonance
motions were discussed in a similar fashion by using the second-order averaging method
in reference [1].

For the two centers one has ¢y, =2, s = +3, a3 =1 and q; = 0, j > 4. So the values of
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TABLE 1

The values of Awi, By and Cyy for the centers (x, x) = (+1,0)
in equation (75)

(k, 1) A By Cu
(.2 T 3 +%
(2,3) % 2 Fom
4, 1) 9 12 +3
(1.4) 5 : +3

the parameters A4;,, B, and C.,, defined by equations (34), (49), (61) and (73), are
computed from these values. See Table 1 for the parameter values.

Figure 13 shows the approximate saddle-node and period-doubling bifurcation sets near
the unperturbed centers, obtained by the above third-order averaging analyses of sections
3-5, in the (w, y)-space. The bifurcation sets near the ultra-subharmonic resonances of

() (b)

0.26

0.18

0.0 l l 0.10
2.00 2.05 2.10 0.88 0.90 0.92

0.4

0.2

0 : l 0.0 l
5.50 5.55 5.60 0.30 0.33 0.36

w

Figure 13. Bifurcation sets near the unperturbed centers in equation (75) when the control parameters are 7
and w. (a) Saddle-node bifurcations near the ultra-subharmonic resonance of order 3/2; (b) saddle-node and
period-doubling bifurcations near the ultra-subharmonic resonance of order 2/3; (c) saddle-node bifurcations
near the fourth-order subharmonic resonance; (d) saddle-node bifurcations near the fourth-order superharmonic
resonance. Bifurcation sets predicted by the third-order averaging theory are shown as solid lines, and numerically
computed bifurcation sets are shown as broken lines. See also the captions of Figures 1 and 4.
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0.3 0.3
(b)
-0.3 -0.3
0.6 1.2 0.9 1.3
0.15 0.3
(c) (d)
=X
-0.15 -0.3
1.05 1.25 0.7 1.1
0.4
-0.4 :
0.8 1.4

Figure 14. Phase portraits of the Poincaré map P of equation (75) for 3 = 0-1. (a) 7 = 0-15 and @ = 2:07; (b)
7=0-15and w = 0-907; (¢c) 7 = 0-185 and w = 0-907; (d) y = 2 and w = 5-57; (¢) y = 0-2 and w = 0-34. The dots
(@) represent stable fixed points or periodic orbits of P. These pictures should be compared with Figures 3(b),
6(b), 6(c), 9(b) and 12(b).
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order 3/2 and 2/3 are drawn in Figure 13(a) and (b), respectively, and the bifurcation sets
near the fourth-order subharmonic and superharmonic resonances are drawn in
Figure 13(c) and (d), respectively. These bifurcation curves were computed for ¢ = 0-1 and
0=1 (ie., =0-001). Condition (74) was used in Figure 13(d). For the purpose of
comparison, the corresponding numerical simulation results for equation (75) are also
plotted as the broken curves. Here a software called “AUTO [17] was used to obtain these
numerical results. The theoretical predictions are qualitatively in good agreement with the
numerical simulation results. It should also be remarked that more accurate theoretical
predictions can be obtained if the fourth- or higher-order averaging procedure is used. See
reference [8].

Figure 14 shows some numerically computed phase portraits of the Poincaré map P for
equation (75), defined as

P2 (x(0), X(0) = (x(T), X(T)), (76)

where x(¢) represents a solution of equation (75) and 7 = 2xn/w is the forcing period.
Again, the software “Dynamics” was used here. Thus, the phase portraits of the Poincaré
map near the unperturbed centers are very similar to those of the associated averaged
systems (see Figures 3(b), 6(b), 6(c), 9(b) and 12(b)) while the periodic orbits of the
Poincaré map correspond to fixed points of the averaged systems.

7. CONCLUSIONS

In this paper periodically forced non-linear oscillators of the general form (1) have been
studied by applying the third-order averaging method. The ultra-subharmonic resonance
motions of order 3/2 and 2/3 near the unperturbed centers were theoretically described.
The necessary tedious computations were implemented by using the package of the
computer algebra system, Mathematica, recently developed by the author and his
co-worker [8]. Several types of bifurcations at which the ultra-subharmonic orbits are
created or annihilated were detected. Moreover, the fourth-order subharmonic and
superharmonic resonance behavior was discussed. To illustrate the theoretical results, an
example was presented for the Duffing oscillator with double well potential. Numerical
simulation results were also given and their good agreement with the theoretical
predictions was found.

Here special cases of subharmonic, superharmonic and ultra-subharmonic resonances
were considered and the third-order averaging method was applied. However, the
higher-order averaging method will also reveal other subharmonic, superharmonic and
ultra-subharmonic resonance motions, which are found in appropriate numerical
simulations as pointed out in section 1, if fourth- or higher-order averaging is carried out.
Thus, one may be able to obtain theoretical explanations for complicated dynamical
behavior in simple non-linear oscillators.

Our results are valid for a large class of periodically forced oscillators, including weakly
non-linear oscillators of the type (2). This implies, along with the results of reference [1],
that there exist common bifurcation structures near the ultra-subharmonic resonances as
well as the higher-order subharmonic and superharmonic resonances in different systems
of the form (1) or (2). In fact, it was shown by numerical computations and experimental
measurements that some different systems were proven to have the same bifurcation
structures near the primary and subharmonic resonances predicted by the second-order
averaging analyses (see references [1, 18]). Hence, numerical or experimental evidence for
the above conjecture is expected.
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APPENDIX

The functions w; (0) in equation (24) are given as follows:

_ 9a2F2 9612F2 9a2F2
Wi = (— e 08 20 + 3757 €O 40 — cde? 08 80,

9;;1; sin 20 +

2 2 T
%sin 40 + 96‘2652 si 80) , (A1)

T
Wi = <9a2 ZF cos 0 + e I; cos 70, el sin 6 — 3a: I sin 36 Sa, I sin 70) ,

4o 28w 4o 20 - 28w’
(A2)
T
wi (0) = <—QZ;{ sin 0 + 3;% sin 30 — % sin 70, —% cos 0 — % cos 76> ,

(A3)
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9a, . !
w13(0)—< T6 ——5cos 20 — 6w’c 69, 16 2sm20—i—16 2s1n69> (A4)

[ 27 !
w14(0)—< 60> 2cos29—f—16 2~ cos 60, 16 2sm20 160 7sm69> (AS)

;
w15(9)=< g";si ze+8 2in60,8 2 cos 29+8 200560) (A6)

197372 27a; I 25652 27a, I
W”(@):([ 7920~ 80 }059_[ 179207~ 400" ]COS >0

19712w* 88w?

783a; I’ 9a; T’
1792w 56>

2 3 3
0s 70 + [1431512 I + 9as I ]cos 116,

1792w* 40w

19737a3 I'? 27a3
1792w* 8w?

2 13 3
[2565512 " 2l ] <in 50

197120* * 88w?

783a; I’ 9ay T’
1792w* 56w

3 3 !
[1431azF +9azr]sm110>, (A7)

5120° 160 240"~ 160 T 8w’

I
P
P
[+~

2 12 2 2 2 2
War (0) = <_|:3159a2 rr_2al?] ol [837a2 I’ 27a;I* | 9Q

} cos 460

(11072 1> 274, I
—| 358407 * 800 ]CO 106

(3191 2Ta ] o, 83741 2Tas I 9Q 90 | i 40
5120)° 160 2240 160 T 8w

(47792 1> 94,7 . 1107212 27a; T . T
179207 ~ 807 }m 60*[ 33840" 8007 }111100), (A8)

31592 27a, T2 . 8372 2Ias I?  9Q
WZZ(@Z(‘[ S0 162)2}“’29_[ Pdor ~ 160 T 8w }m‘w

47794 T 9a, T . 11072 T 27a,T
[ 17920" 80’ }Sm 69*[ 35840° T 80’

2
:|sin 100,

|:3159a§F2 27a3r2}cos 29_[837a§r2 274 I | 9Q
8

51207 1607 240" 160° +}°°S49
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+ [];(s)gfo I 2;8[;)r 2: cos 109>T, (A9)
wy (0) = <|:2324£1Z2?4F — 2;?;2F: cos 0 — |:8312ai{ — 9;20 :|cos 30
BT NN YT
[7%‘;12%41" — 8%?;211 sin 0 + |:8312ai)4r - 92?20 ] sin 360
+ [829214“’50{ SSal } sin 50 — [% %’g] sin 90>T, (A10)
wyu (0) = <[7(210£4F — Sgﬁf} cos 0 + |:831§if — 95?3 > }c s 36
| e oo 50— T+ Jeos
|:232‘;3654F — 2;2}1 sin 0 — [831;1{ - 95;{] sin 30
[22927:3)5 _Zel } sin 50 + [9292%: p3ul } sin 99>T (Al1)
wis (0) = <[_2131‘;9aj’f Ly2al ] sin 0 [8112’;{ - 9;’;{} sin 30
| st o s Tt [smon,
— :2311926615{ — 213;;] cos 0 + [811212 —— 9a; ] cos 30
+ :2?17261505 — 22751;)5} cos 50 — [99(12 3a3 ] cos 90> (A12)

9a3
16w

27
W (0) = <[323>24 -

2} cos

27a3
40 — [128 4

+

9613
64a)2] cos 80,
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276 9a: | . 276 | 9a; | . !
- [16@4 "o [SRA0F [128(;}“ T 6der |80 ) -
2743 9a | . 2742 9 .
Wy (0) = <—|:165)'4 — 873)32 sin 460 — |:128Z; + 646:;2:| sin 86,
27 9a; | 27a3 9a; !
- [32(04 " 16w’ | °° 40 — |:128w4 + 64(,02:| cos 86) ’
[ 812 27as | . 81a3  27a
W (0) = < 280 6404 sin 80, — [3254 - 16cu32] cos 40
[ 812 27a; '
| 1280 T 6307 | <580 ) -
[ 81a2  27a 81a2  27a
W (0) = ( 0w 16w32} cos 46 + [128;)4 64(;2] cos 86,

8la3
_[128w4 T

T
6213)32:| sin 80) ,

where the superscript T represents the transpose operator.
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