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Generally, various types of ultra-subharmonic motions can be observed in numerical
simulations of periodically forced, non-linear oscillators. However, theoretical expositions
have been provided only for lower-order subharmonics and superharmonics. For a general
class of non-linear oscillators, ultra-subharmonic resonances of order 3/2 and 2/3 are
analyzed by applying the higher-order averaging method. The occurrence of
ultra-subharmonic motions is theoretically explained, and bifurcation behavior near the
ultra-subharmonic resonances is described. The tedious computations required here are
implemented by using a package of the computer algebra system, Mathematica, recently
developed by the author and his co-worker. Moreover, the fourth-order subharmonic and
superharmonic resonance behavior is discussed. An example is presented for the Duffing
oscillator with double well potential, and numerical simulation results are given to
demonstrate the theoretical results.

7 1998 Academic Press Limited

1. INTRODUCTION

Consider periodically forced oscillators of the form

ẍ+ d�ẋ+ f(x)= ḡ cos vt, (1)

where d�, ḡ and v are positive constants, and f is a sufficiently smooth function of x. When
d�= ḡ=0, equation (1) is referred to as the unperturbed system in the following. The
unperturbed phase plane has great variety depending on the form of the function f (see
Figure 1 of reference [1]). In particular, if f(x0)=0 and df(x0)/dxq 0, then there exists
a center at (x, ẋ)= (x0, 0) in the phase plane.

If one concentrates on the dynamics near the unperturbed center (x0, 0), then it is
convenient to introduce a local co-ordinate y such that x= oy+ x0, where 0Q o�1. So
equation (1) can be rewritten as a weakly non-linear oscillator

ÿ+ d�ẏ+v2
0 y+ s

a

j=1

o jaj+1 yj+1 = g cos vt, (2)

where g= ḡ/o, v2
0 = a1 q 0 and

aj =
1
j!

djf
dxj (x0), j=1, 2, . . . . (3)

Thus, one only has to study equation (2) in order to discuss the dynamics of equation (1)
near the center. Especially, if the ratio of the forcing frequency v to the natural frequency
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v0 is close to a rational number, then resonance behavior may occur in equation (2) and
hence near the unperturbed center in equation (1).

Many physical and engineering problems can be modelled as systems of the form (1)
or (2), and numerous theoretical and numerical studies for them have been done. In
particular, the third- or lower-order subharmonic and superharmonic resonances as well
as the primary resonance (near the unperturbed centers for equation (1)) were analyzed
by using the second-order approximation of perturbation techniques such as the methods
of averaging and multiple scales. So it was shown that third- or lower-order subharmonic
and superharmonic motions occur as well as resonant harmonic motions. See references
[1]–[3] for the details. Moreover, ultra-subharmonics as well as higher-order subharmonics
and superharmonics near the associated resonances were observed in numerical
simulations (see, e.g., references [4, 5]). However, these numerical observations have not
been theoretically explained, unlike lower-order subharmonic and superharmonic
resonances.

In this paper a theoretical exposition for the occurrence of ultra-subharmonics in general
systems of the form (1) is presented. Moreover, the higher-order subharmonic and
superharmonic resonance behavior is discussed. To this end, the higher-order averaging
method is applied to equation (2) after some changes of co-ordinates. The details on the
higher-order averaging procedure, in which the higher-order terms can be computed by
the Lie transform algorithm [6, 7], can be found in reference [8] while its basic idea was
described in references [6, 7, 9, 10]. A useful package of the computer algebra system,
Mathematica [11], for performing tedious computations required in application of
higher-order averaging was also developed in reference [8]. Here the necessary
computations are implemented by using the package. It should also be noted that a similar
computer algebra program of MACSYMA was available in reference [12] although it uses
a different, primitive algorithm.

This paper is arranged as follows. In section 2 an outline of the higher-order averaging
method is presented and a general recipe for application of averaging to weakly non-linear
systems such as equation (2) near ultra-subharmonic resonances is briefly mentioned. In
sections 3 and 4, according to the recipe of section 2, the ultra-subharmonic resonances
of order 3/2 and 2/3 near the unperturbed center in equation (1) are discussed by carrying
out third-order averaging procedures for equation (2). In section 5, similar third-order
averaging analyses are performed for the fourth-order subharmonic and superharmonic
resonances. In section 6 an example is presented for the Duffing oscillator with double well
potential, and numerical simulation results are given to verify the theoretical results. In
conclusion, a summary and some comments are stated in section 7.

2. HIGHER-ORDER AVERAGING

The higher-order averaging method is first reviewed. See reference [8] for the details.
Consider systems of the form

ẋ= of(x, vt, o), x $ Rn, 0Q o�1, (4)

where f(x, u, o) $ Rn is analytic and of period 2p in u. f(x, u, o) can be expanded in power
series of o:

f(x, u, o)= s
a

m=1

om−1

m!
fm (x, u), (5)

where fm (x, u), m=1, 2, . . . , are also analytic and of period 2p in u.
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Let f (m)(y, u), m=1, 2, . . . , be functions such that they are computed as
f (m)(y, u)= f (m)

0 (y, u) by recursive relations,

f (0)
m (y, u)= fm (y, u),

f (1)
m−1 (y, u)= f (0)

m (y, u)+ s
m−2

i=0

Cm−1
i Li+1 f
 (0)

m− i−1 (y, u),

f (l)
m− l (y, u)= f (l−1)

m− l+1 (y, u)+ s
m− l

i=0

Cm− l
i Li+1 f
 (l−1)

m− l− i (y, u) for le 2, (6)

where

f
 (l)m− l (y, u)= f (l)
m− l (y, u)−v

1wm

1u
(y, u) for le 1, (7)

with

Ck
j =

k!
(k− j)!j!

and Li g(y, u)=Dy g(y, u)wi (y, u)−Dy wi (y, u)g(y, u). (8)

Using a general theory of the Lie transform [6,7], one can show that under a
transformation of the form

x= y+ s
m0

m=0

wm (y, vt), (9)

equation (4) is written as

ẏ= s
m0

m=1

om

m!
f�(m)(y)+ om0 +1g(m)(y, vt, o), ( 10)

where

f�(m)(y)=
1
2p g

2p

0

f (m)(y, u) du, (11)

and g(m)(y, u, o) is of period 2p in u. Moreover, the transformation (9) is given by

v
1wm

1u
(y, u)= f	 (m)(y, u), (12)

where

f	 (m)(y, u)= f (m)(y, u)− f�m(y). (13)

When the higher-order term of O(om0 +1) is eliminated, equation (10) becomes

ẏ= s
m0

m=1

om

m!
f�(m)(y), (14)

which is referred to as the m0 -th order averaged system for equation (4).
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The first-order averaging theory [9, 10, 13] can easily be extended to the case of
higher-order averaging. In particular, a solution x(t) of the original system (4) can be
expressed as

x(t)= ȳ(t)+ s
m0 −1

m=1

om

m!
wm (ȳ(t), vt)+O(om0), (15)

by a solution ȳ(t) of the averaged system (14) on the time scale of O(1/o) unless the
first-order term is zero. If the first-order term is zero, a different estimation is obtained
(see references [10, 14]; see also section 3). Hyperbolic fixed points in the averaged system
correspond to hyperbolic periodic orbits in the original system, the local stable and
unstable manifolds of which can be also approximated by those of the corresponding
hyperbolic fixed points in the averaged system. Moreover, hyperbolic periodic orbits in the
averaged system correspond to normally hyperbolic invariant 2-tori in the original system
and so on.

Consider next periodically forced, weakly non-linear single-degree-of-freedom systems
of the form

ẍ+v2
0 x= oF(x, ẋ, vt, o), (16)

where F(x, ẋ, u, o) $ R is analytical and 2p-periodic in u. Assume that an
ultra-subharmonic resonance occurs such that v/v0 1 k/l with k and l relatively prime
integers, and set

ojV=(l2v2 − k2v2
0 )/k2 (17)

with je 1 an integer. Then, using the van der Pol transformation

u cos
l
k

vt −
k
lv

sin
l
k

vt x

G
F

f
G
J

j
G
G

G

F

f
G
G

G

J

j
G
F

f
G
J

jv
=

−sin
l
k

vt −
k
lv

cos
l
k

vt ẋ
(18)

in equation (16), one obtains

u̇ sin
l
k

vt
G
F

f
G
J

j
G
G

G

F

f
G
G

G

J

jv̇
=−o

k
lv

[oj−1Vx+F(x, ẋ, vt, o)]
cos

l
k

vt
,

(19)

where x and ẋ are expressed by u and v through equation (18). Equation (19) has the form
of equation (4), and hence the averaging method is applicable. See also section 4 of
reference [8] for a treatment of multi-degree-of-freedom systems. The package of
Mathematica developed in reference [8], ‘‘haverage.m’’, includes two programs which
implement the higher-order averaging procedure for equation (4) and the van der Pol
transformation for multi-degree-of-freedom systems.
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3. ULTRA-SUBHARMONICS OF ORDER 3/2

Consider now the ultra-subharmonic resonance of order 3/2 in equation (2) and
equivalently in equation (1). Suppose that v/v0 1 3/2 and set o2V=(4v2 −9v2

0 )/9.
Replace d� by o3d and assume d and g to have values of O(1). By letting

z= y+G cos vt, G= g/(v2 −v2
0 ), (20)

equation (2) becomes

z̈+v2
0 z=−oa2 (z−G cos vt)2 − o2a3 (z−G cos vt)3

− o3[a4 (z−G cos vt)4 + d(ż+vG sin vt)]+O(o4). (21)

The van der Pol transformation (18) with k=3 and l=2 is used to transform equation
(21) into a system of the form (4) and the higher-order averaging method is applied. Using
the package ‘‘haverage.m’’, one obtains the third-order averaged system

u̇=(o2/2v) [(A3/2 G2 + 3
2 V)v+B3/2 (u2 + v2)v]+ (o3/2v) (−dvu+2C3/2 G2uv),

v̇=(o2/2v) [−(A3/2 G2 + 3
2 V)u−B3/2 (u2 + v2)u]+ (o3/2v) [−dvv+C3/2 G2(u2 − v2)],

(22)

where

A3/2 = 405
56 (a2

2 /v2)− 9
4 a3, B3/2 = 45

16 (a2
2 /v2)− 9

8 a3,

C3/2 = 15795
1024 (a3

2 /v4)− 4455
512 (a2 a3 /v2)+ 9

8 a4. (23)

Note that the first-order term is zero in the averaged system (22). The transformation (9)
is also given by

w1 (u, v, u)=w10 (u)+w11 (u)u+w12 (u)v+w13 (u)u2 +w14 (u)v2 +w15 (u)uv

w2 (u, v, u)=w20 (u)+w21 (u)u+w22 (u)v+w23 (u)u2 +w24 (u)v2 +w25 (u)uv

+w26 (u)u3 +w27 (u)v3 +w28 (u)u2v+w29 (u)uv2, (24)

where u=vt/3. See the Appendix for the expressions of wij (u).
The averaged system (22) has a trivial equilibrium at (u, v)= (0, 0), which is always

stable. The equilibrium corresponds to a harmonic orbit in equation (2),

y=−G cos vt+ o0−9a2 G2

8v2 +
9a2 G2

64v2 cos 2vt1+O(o2), (25)

and a harmonic orbit in equation (1),

x= x0 − oG cos vt+ o20−9a2 G2

8v2 +
9a2 G2

64v2 cos 2vt1+O(o3). (26)

These expressions are easily obtained from equation (24) and also verified by using a
regular perturbation technique. Note that the approximate solution in equation (2) can
be obtained only to O(o) since the first-order averaged term is zero (cf. equation (15)).

In polar co-ordinates, r=zu2 + v2 and f=arctan (v/u), equation (22) becomes

ṙ=(o3/2v) [−dvr+C3/2 G2r2 sin 3f],

f� =(o2/2v) [−(A3/2 G2 + 3
2 V)−B3/2 r2]+ (o3/2v)C3/2 G2r cos 3f. (27)
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The package ‘‘haverage.m’’ can also be used for the derivation of equation (27). Solutions
of equation (27) with r=0 correspond to the trivial equilibrium of equation (22).

Suppose that B3/2, C3/2 $ 0 and that

C2
3/2 G4[−4B3/2 (A3/2 G2 + 3

2 V)+ o2C2
3/2 G4]−4B2

3/2 d2v2 q 0,

i.e.,

−B3/2 Vq 2
3 A3/2 B3/2 G2 + 2

3 (B2
3/2 d2v2/C2

3/2 G4)− 1
6 o2C2

3/2 G4. (28)

Then equation (27) has fixed points with rq 0 at (r, f)= (r2, f2 +2jp/3), j=0, 1, 2,
where

r2 =(1/z2=B3/2 =){[−2B3/2 (A3/2 G2 + 3
2 V)+ o2C2

3/2 G4]

2 ozC2
3/2 G4[−4B3/2 (A3/2 G2 + 3

2 V)+ o2C2
3/2 G4]−4B2

3/2 d2v2}1/2 (29)

and

f2 = 1
3 arctan (odv/[(A3/2 G2 + 3

2 V)+B3/2 r2
2]). (30)

Note that if condition (28) holds, then the first term in the brace of equation (29),
−2B3/2 (A3/2 G2 + 3

2 V)+ o2C2
3/2 G4, is positive. The fixed points (r+, f+ +2jp/3),

j=0, 1, 2, are stable and the others are unstable. Each triple of fixed points
(r2, f2 +2jp/3), j=0, 1, 2, corresponds to a single ultra-subharmonic orbit of order 3/2
in equation (1),

x= x0 + o[−G cos vt+ r2 cos (2
3 vt+f2)]+O(o2), (31)

with the same stability type.
The two triples of fixed points appear or disappear at three saddle-node bifurcations

[13, 15] when

V=−2
3 A3/2 G2 − 2

3 (B3/2 d2v2/C2
3/2 G4)+ 1

6 o2(C2
3/2 G4/B3/2). (32)

By noting that v= 3
2 v0 +O(o2), and v2

0 = a1, the saddle-node bifurcation set (32) can be
expressed as

V=−2
3 A�3/2 G2 − 3

2 (a1 B�3/2 d2/C�2
3/2 G4)+O(o2), (33)

where

A�3/2 = 45
14 (a2

2 /a1)− 9
4 a3, B�3/2 = 5

4 (a2
2 /a1)− 9

8 a3,

C�3/2 = 195
64 (a3

2 /a2
1 )− 495

128 (a2 a3 /a1)+ 9
8 a4. (34)

Equation (33) also represents an approximate saddle-node bifurcation set in equation (1)
at which stable and unstable ultra-subharmonic orbits of order 3/2 given by equation (31)
appear or disappear.
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Figure 1. Saddle-node bifurcation sets near the ultra-subharmonic resonance of order 3/2 in equation (1) when
the control parameters are G and V. (a) A�3/2 Q 0 and B�3/2 Q 0; (b) A�3/2 =0 and B�3/2 Q 0; (c) A�3/2 q 0 and B�3/2 Q 0;
(d) A�3/2 Q 0 and B�3/2 q 0; (e) A�3/2 =0 and B�3/2 q 0; (f ) A�3/2 q 0 and B�3/2 q 0. SN and SN', respectively, denote
super- and subcritical saddle-node bifurcations when G (i.e., the forcing amplitude ḡ) is changed. The broken
curves labeled a and b, respectively, represent the graphs of V=−2

3A�3/2G2 and V=−3
2(a1B�3/2d2/C�3/2G4).

The approximate saddle-node bifurcation curves in the (V, G)-space are shown in
Figure 1, and the associated bifurcation diagrams for the averaged system (27) are shown
in Figure 2. Here G6

3/2 = 9
2 (a1 B�3/2 d2/A�3/2 C�2

3/2) and V3
3/2 =−9

2 (a1 A�2
3/2 B�3/2 d2/C�2

3/2). Note that the
bifurcation curves are similar to those of third-order subharmonics (cf. Figure 6 of reference
[1]). When G is increased while the other parameters are fixed (or equivalently only the
forcing amplitude ḡ is changed), both supercritical and subcritical saddle-node bifurcations
can occur if A�3/2 B�3/2 q 0, and only supercritical saddle-node bifurcations can occur if
A�3/2 B�3/2 E 0. The phase portraits of the averaged system (22) are also sketched in Figure 3
for some parameter values. Here the numerical computations were performed by using a
software called ‘‘Dynamics’’ [16].

Figure 2. Bifurcation diagrams for the averaged system (27) when the control parameter is G. (a) A�3/2 Q 0,
B�3/2 Q 0, VqV3/2, or A�3/2 q 0, B�3/2 q 0, VQV3/2; (b) A�3/2 =0, B�3/2VQ 0; (c) A�3/2B�3/2 Q 0. Note that no bifurcations
occur in other cases. The points with rq 0 correspond to ultra-subharmonics of order 3/2 in equation (1). SN
and SN' denote super- and subcritical saddle-node bifurcations. Stable and unstable orbits are also shown as
solid and broken lines, respectively.
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4. ULTRA-SUBHARMONICS OF ORDER 2/3

Next consider the ultra-subharmonic resonance of order 2/3. Suppose that v/v0 1 2/3,
and set o2V=(9v2 −4v2

0 )/4. Application of the van der Pol transformation (18) with k=2
and l=3 and the third-order averaging method to equation (21) yields

u̇=(o2/2v) [(A2/3 G2 + 2
3 V)v+B2/3 (u2 + v2)v]+ (o3/2v) (−dvu−C2/3 G3v),

v̇=(o2/2v) [−(A2/3 G2 + 2
3 V)u−B2/3 (u2 + v2)u]+ (o3/2v) (−C2/3 G3u− dvv), (35)

which is expressed in polar co-ordinates as

ṙ=(o3/2v) [−dvr−C2/3 G3r sin 2f],

f� =(o2/2v) [−(A2/3 G2 + 2
3 V)−B2/3 r2]− (o2/2v)C2/3 G3 cos 2f, (36)

Figure 3. Phase portraits of the averaged system (22) for A3/2 =171/141 12·21428571, B3/2 =9/2(=4·5),
C3/2 =945/64(=14·765625), V=−10 and dv=3z2/21 2·12132034. (a) G=0·2; (b) G=0·6; (c) G=1·2. The
dots (W) represent stable fixed points. The parameter values are included in the cases of Figures 1(f ) and 2(a).
When G is changed, three supercritical saddle-node bifurcations simultaneously occur at G1 0·28536493 and
three subcritical saddle-node bifurcations simultaneously occur at G1 1·1127972. Similar phase portraits are also
obtained in other cases.
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where

A2/3 = 25
54 (a2

2 /v2)− a3, B2/3 = 20
81 (a2

2 /v2)− 1
2 a3,

C2/3 = 5
1134 (a3

2 /v4)− 215
1134 (a2 a3 /v2)+ 1

3 a4. (37)

Here the package ‘‘haverage.m’’ was also used. The averaged system (35) has a
trivial equilibrium at (u, v)= (0, 0), which corresponds to a harmonic orbit in
equation (1),

x= x0 − oG cos vt+ o20−2a2 G2

9v2 +
2a2 G2

7v2 cos 2vt1+O(o3). (38)

The equilibrium is stable if

(A2/3 G2 + 2
3 V)2 q o2[C2

2/3 G6 − d2v2], (39)

and unstable if

(A2/3 G2 + 2
3 V)2 Q o2[C2

2/3 G6 − d2v2]. (40)

Suppose that B2/3, C2/3 $ 0 and that

C2
2/3 G6 − d2v2 q 0 and B2/3 [−(A2/3 G2 + 2

3 V)2 ozC2
2/3 G6 − d2v2]q 0. (41)

Then equation (36) has non-trivial fixed points at (r, f)= (r2, f2) and (r2, f2 + p),
where

r2 =z(1/B2/3) [−(A2/3 G2 + 2
3 V)2 ozC2

2/3 G6 − d2v2] (42)

and

f2 = 1
2 arctan (odv/[(A2/3 G2 + 2

3 V)+B2/3 r2
2]). (43)

Moreover, when B2/3 q 0 (resp. B2/3 Q 0), the fixed points (r+, f+), (r+, f+ + p) are
stable (resp. unstable) and the others are unstable (resp. stable). Each pair of fixed points
(r2, f2), (r2, f2 + p) corresponds to a single ultra-subharmonic orbit of order 2/3 in
equation (1),

x= x0 + o[−G cos vt+ r2 cos (3
2 vt+f2)]+O(o2), (44)

with the same stability type.
The two pairs of fixed points appear or disappear at two saddle-node bifurcations when

C2
2/3 G6 − d2v2 =0, (45)

if −B2/3 (A2/3 G2 + 2
3 V)q 0. On the other hand, if the first condition in equation (41) holds

and

−(A2/3 G2 + 2
3 V)2 ozC2

2/3 G6 − d2v2 =0, (46)

then a pitchfork bifurcation [13, 15] occurs at r=0 (i.e., (u, v)= (0, 0)) and the pair of
fixed points, (r2, f2), (r2, f2 + p), disappears or appears there. Since v= 2

3 v0 +O(o2)
and v2

0 = a1, the saddle-node bifurcation set (45) and pitchfork bifurcation sets (46) can
be expressed as

G6 = 4
9 (a1 d2/C�2

2/3)+O(o2) (47)

and

V= 3
2 [−A�2/3 G2 2 ozC�2

2/3 G6 − 4
9 a1 d2]+O(o2), (48)
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Figure 4. Saddle-node and period doubling bifurcation sets near the ultra-subharmonic resonance of order
2/3 in equation (1) when the control parameters are =G= and V. (a) A�2/3 Q 0 and B�2/3 Q 0; (b) A�2/3 =0 and B�2/3 Q 0;
(c) A�2/3 q 0 and B�2/3 Q 0; (d) A�2/3 Q 0 and B�2/3 q 0; (e) A�2/3 =0 and B�2/3 q 0; (f ) A�2/3 q 0 and B�2/3 q 0. PD and
PD', respectively, denote super- and subcritical period doubling bifurcations, and SN denotes supercritical
saddle-node bifurcations when =G= (i.e., the forcing amplitude ḡ) is changed. The broken curves labeled a represent
the graph of V=−3

2A�2/3G2.

respectively, where

A�2/3 = 25
24 (a2

2 /a1)− a3, B�2/3 = 5
9 (a2

2 /a1)− 1
2 a3,

C�2/3 = 5
224 (a3

2 /a2
1 )− 215

504 (a2 a3 /a1)+ 1
3 a4. (49)

Note that the pitchfork bifurcations correspond to period doubling bifurcations [13, 15]
of the harmonic orbit given by equation (38) to the ultra-subharmonic orbits of order 2/3
given by equation (44) in equation (1): the stability of the harmonic orbit changes (cf.
equations (39), (40) and (46)) and the ultra-subharmonic orbits appear or disappear there.
See also references [1, 3]. So equations (47) and (48), respectively, represent approximate
saddle-node and period doubling bifurcation sets for ultra-subharmonics of order 2/3 in
equation (1).

The approximate saddle-node and period doubling bifurcation curves in the
(V, =G =)-space are shown in Figure 4, and the associated bifurcation diagrams for the
averaged system (36) are shown in Figure 5. Here G6

2/3=4
9 (a1 d2/C�2

2/3) and V3
2/3=−3

2 (a1 A�3
2/3 d2/

C�2
2/3). Note that at vt=0 mod 2p the ultra-subharmonic orbits of order 2/3 take

x= x0 + o(−G+ r2 cos f2)+O(o2) or x= x0 + o(−G− r2 cos f2)+O(o2) while the
harmonic orbit takes only x= x0 − oG+O(o2). Thus, when the forcing amplitude ḡ is
increased while the other parameters are fixed, the stable and unstable ultra-subharmonic
orbits appear or disappear in several manners, depending on the parameter values: they
are created at supercritical saddle-node or period doubling bifurcations, and annihilated
at subcritical period doubling bifurcations. The phase portraits of the averaged system (35)
are sketched in Figure 6 for some parameter values. Again, the software ‘‘Dynamics’’ was
used to draw these pictures.
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Analyses similar to those of the preceding and this sections may also reveal other purely
ultra-subharmonic resonance motions such that v/v0 1 k/l with k, lq l relatively prime
integers. However, application of third- or fourth-order averaging to these cases only yields
uninteresting or insufficient averaged systems: they have only trivial equilibria or they are
degenerate. So fifth- or higher-order averaging is required for such analyses. Some results
on these ultra-subharmonic resonances will also be reported elsewhere.

5. HIGHER-ORDER SUBHARMONICS AND SUPERHARMONICS

It is plausible to consider that the higher-order averaging method can shed light on not
only purely ultra-subharmonic resonance motions, but also higher-order subharmonic and
superharmonic resonance motions. In this section, to demonstrate its usefulness in the
latter cases, fourth-order subharmonic and superharmonic resonances are discussed by
using the third-order averaging procedure. Fifth- or higher-order subharmonic and
superharmonic resonances can also be similarly analyzed although fourth- or higher-order
averaging is required.

5.1. - 

Consider the fourth-order subharmonic resonance, v/v0 1 4, and set
o2V=(v2 −16v2

0 )/16. Application of the van der Pol transformation (18) with k=4 and

Figure 5. Bifurcation diagrams for the averaged system (36) when the control parameter is =G=. (a) A�2/3 Q 0,
B�2/3 Q 0, VqV2/3 or A� 2/3 q 0, B�2/3 q 0, VQV2/3; (b) A�2/3 =0, B�2/3 Q 0, VQ 0 or A�2/3 =0, B�2/3 q 0, Vq 0; (c)
A� 2/3 =0, B�2/3 Q 0, Vq 0 or A�2/3 =0, B�2/3 q 0, VQ 0; (d) A�2/3 q 0, B�2/3 Q 0, VQV2/3 or A�2/3 Q 0, B�2/3 q 0, VqV2/3;
(e) A�2/3 q 0, B�2/3 Q 0, VqV2/3 or A�2/3 Q 0, B�2/3 q 0, VQV2/3. The points with rq 0 correspond to
ultra-subharmonics of order 2/3 in equation (1), while the points with r=0 correspond to harmonics. PF and
PF', respectively, denote super- and subcritical pitchfork bifurcations. See also the caption of Figure 2.
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Figure 6. Phase portraits of the averaged system (35) for A2/3 =59/16(=3·6875), B2/3 =2, C2/3 =−1315/
16881−0·48921131, V=−15 and dv=2z2/31 0·94280904. (a) G=−1; (b) G=−1·4; (c) G=−1·65; (d)
G=−2. These parameter values are included in the cases of Figures 4(f) and 5(a). When =G= is changed, two
supercritical saddle-node bifurcations simultaneously occur at =G=1 1·2447607, and subcritical pitchfork
bifurcations occur at =G=1 1·6310537 and at =G=1 1·66351311. See also the caption of Figure 3.

l=1 and the third-order averaging method to equation (21) yields

u̇=(o2/2v) [(A4/1 G2 +4V)v+B4/1 (u2 + v2)v]+ (o3/2v) [−dvu−C4/1 G(3u2 − v2)v],

v̇=(o2/2v) [−(A4/1 G2 +4V)u−B4/1 (u2 + v2)u]+ (o3/2v) [−dvv−C4/1 G(u2 −3v2)u],

(50)

which is expressed in polar co-ordinates as

ṙ=(o3/2v) [−dvr−C4/1 Gr3 sin 4f],

f� =(o2/2v) [−(A4/1 G2 +4V)−B4/1 r2]− (o3/2v)C4/1 Gr2 cos 4f, (51)
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where

A4/1 = 160
3 (a2

2 /v2)−6a3, B4/1 = 160
3 (a2

2 /v2)−3a3,

C4/1 = 1280
9 (a3

2 /v4)+40(a2 a3 /v2)+2a4. (52)

The averaged system (50) has a trivial equilibrium at (u, v)= (0, 0), which is always
stable and corresponds to a harmonic orbit in equation (1),

x= x0 − oG cos vt+ o20−8a2 G2

v2 +
8a2 G2

63v2 cos 2vt1+O(o3). (53)

If B4/1, C4/1 $ 0,

−B4/1 (A4/1 G2 +4V)q 0 (54)

and

C2
4/1 G2(A4/1 G2 +4V)2 qB2

4/1 d2v2 − o2C2
4/1 G2d2v2, (55)

then equation (51) has non-trivial fixed points at (r, f)= (r2, f2 + jp/2), j=0, 1, 2, 3,
where

r2 =6 1
B2

4/1 − o2C2
4/1 G2 [−B4/1 (A4/1 G2 +4V)

2 oz(C4/1 G)2(A4/1 G2 +4V)2 −B2
4/1 d2v2 + o2C2

4/1 G2d2v2]7
1/2

(56)

and

f2 = 1
4 arctan (−dv/[(A4/1 G2 +4V)+B4/1 r2

2]). (57)

The fixed points (r+, f+ + jp/2), j=0, 1, 2, 3, are stable and the others are unstable.
Each set of fixed points corresponds to a single fourth-order subharmonic orbit in
equation (1),

x= x0 + o[−G cos vt+ r2 cos (1
4 vt+f2)]+O(o2), (58)

with the same stability type. The two sets of fixed points appear or disappear at four
saddle-node bifurcations when condition (54) holds and

C2
4/1 G2(A4/1 G2 +4V)2 =B2

4/1 d2v2 − o2C2
4/1 G2d2v2. (59)

Note that if condition (55) holds, then equality does not hold instead of inequality in
equation (55) since B4/1 $ 0. By using the relation v=4za1 +O(o2), the saddle-node
bifurcation set (59) can be expressed as

V=−1
4 A�4/1 G2 −za1 B�4/1 d/=C�4/1 =G+O(o2), (60)

which represents an approximate saddle-node bifurcation set of fourth-order subharmonic
orbits, where

A�4/1 = 10
3 (a2

2 /a1)−6a3, B�4/1 = 10
3 (a2

2 /a1)−3a3,

C�4/1 = 5
9 (a3

2 /a2
1 )+ 5

2 (a2 a3 /a1)+2a4. (61)
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Figure 7. Saddle-node bifurcation sets near the fourth-order subharmonic resonance in equation (1) when the
control parameters are G and V. (a) A�4/1 Q 0 and B�4/1 Q 0; (b) A�4/1 =0 and B�4/1 Q 0; (c) A�4/1 q 0 and B�4/1 Q 0; (d)
A�4/1 Q 0 and B�4/1 q 0; (e) A�4/1 =0 and B�4/1 q 0; (f ) A�4/1 q 0 and B�4/1 q 0. The broken curves labeled a and b,
respectively, represent the graphs of V=−1

4A�4/1G2 and V=−(za1B�4/1d/=C�4/1=G). See also the caption of
Figure 1.

Figures 7 and 8, respectively, show the approximation saddle-node bifurcation sets (60)
in the (V, G)-space and associated bifurcation diagrams for the averaged system (51). Here
G3

4/1 =2(za1 B�4/1 d/A�4/1 =C�4/1 =) and V3
4/1 =−27

16 (a1 A�4/1 B�2
4/1 d2/C�2

4/1). Thus, the bifurcation
curve is similar to those of third-order subharmonics and ultra-subharmonics of order 3/2
(cf. Figure 6 of reference [1] and Figure 1): when ḡ is increased, fourth-order subharmonics
appear or disappear at supercritical or subcritical saddle-node bifurcations. The phase
portraits of the averaged system (50) drawn by the software ‘‘Dynamics’’ are also shown
in Figure 9.

5.2. - 

Next consider the fourth-order superharmonic resonance, v/v0 1 1/4, and set
o2V=16v2 −v2

0 . Application of the van der Pol transformation (18) with k=1 and l=4

Figure 8. Bifurcation diagrams for the averaged system (51) when the control parameter is G. (a) A�4/1 Q 0,
B�4/1 Q 0, VqV4/1, or A�4/1 q 0, B�4/1 q 0, VQV4/1; (b) A�4/1 =0, B�4/1VQ 0; (c) A�4/1B�4/1 Q 0. The points with rq 0
correspond to fourth-order subharmonics in equation (1). See also the caption of Figure 2.
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Figure 9. Phase portraits of the averaged system (50) for A4/1 =9, B4/1 =12, C4/1 =15/2(=7·5), V=−6 and
dv=4z21 5·65685425. (a) G=0·3; (b) G=0·7; (c) G=2. These parameter values are included in the cases
of Figures 7(f ) and 8(a). When G is increased, four supercritical saddle-node bifurcations simultaneously occur
at G1 0·40122646 and four subcritical saddle-node bifurcations simultaneously occur at G1 1·7953490. See also
the caption of Figure 3.

and the third-order averaging method to equation (21) yields

u̇=(o2/2v) [(A1/4 G2 + 1
4 V)v+B1/4 (u2 + v2)v]− (o3/2v)dvu,

v̇=(o2/2v) [−(A1/4 G2 + 1
4 V)u−B1/4 (u2 + v2)u]+ (o2/2v) (−dvv+C1/4 G4), (62)

which is expressed in polar co-ordinates as

ṙ=(o2/2v) [−dvr+C1/4 G4 sin f],

f� =(o2/2v) [−(A1/4 G2 + 1
4 V)−B1/4 r2]+ (o3/2v)C1/4 G4 cos f/r, (63)
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where

A1/4 = 95
4032 (a2

2 /v2)− 3
8 a3, B1/4 = 5

384 (a2
2 /v2)− 3

16 a3,

C1/4 = 55
32256 (a3

2 /v4)− 15
896 (a2 a3 /v2)+ 1

32 a4. (64)

Equations (62) and (63) have the same forms as the averaged systems for equation (1)
near the primary resonance. See section 2.1 of reference [1]. Therefore, an analysis similar
to that given there reveals the dynamical and bifurcation behavior in equations (62)
and (63).

Suppose that B1/4 $ 0. Let r0 be a solution of the algebraic equation

(odvr)2 + [(A1/4 G2 + 1
4 V)r+B1/4 r3]2 = (oC1/4 G4)2 (65)

and let

f0 =arctan (odv/[(A1/4 G2 + 1
4 V)+B1/4 r2

0 ]), (66)

then (r0, f0) is a fixed point of equation (63) and corresponds to a fourth-order
superharmonic orbit in equation (1),

x= x0 + o[−G cos vt+ r0 cos (4vt+f0)]+O(o2). (67)

The fixed points appear or disappear at a saddle-node bifurcation when

o2C2
1/4 G8 = {−2(A1/4 G2 + 1

4 V) [(A1/4 G2 + 1
4 V)2 +9o2d2v2]

2 2[(A1/4 G2 + 1
4 V)2 −3o2d2v2]3/2}/27B1/4. (68)

The saddle-node bifurcation sets (68) can be expressed as

o2C2
1/4 G8 =−o2d2v2(A1/4 G2 + 1

4 V)/B1/4 +O(o4) ( 69)

and

o2C2
1/4 G8 = [−4(A1/4 G2 + 1

4 V)3 −9o2d2v2(A1/4 G2 + 1
4 V)]/27B1/4 +O(o4), (70)

i.e.,

V=−4A�1/4 G2 −64B�1/4 C�2
1/4 G8/a1 d2 +O(o2) (71)

and

V=−4A�1/4 G2 +O(o2), (72)

where

A�1/4 = 95
252 (a2

2 /a1)− 3
8 a3, B�1/4 = 5

24 (a2
2 /a1)− 3

16 a3,

C�1/4 = 55
126 (a3

2 /a2
1 )− 15

56 (a2 a3 /a1)+ 1
32 a4. (73)

Here the relation v= 1
4 za1 was used. Note that (A1/4 G2 + 1

4 V)2 e 3o2d2v2 by equation
(68), so that

G8 e 2
z3
72

oa3/2
1 d3/B�1/4 C�2

1/4, (74)

where the upper choice of the sign is taken for B�1/4 q 0 and the lower choice for B�1/4 Q 0.
Equations (71) and (72) also represent approximate saddle-node bifurcation sets of
fourth-order superharmonic orbits.
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Figure 10. Saddle-node bifurcation sets near the fourth-order superharmonic resonance in equation (1)
when the control parameters are =G= and V. (a) A� 1/4 Q 0 and B�1/4 Q 0; (b) A� 1/4 =0 and B�1/4 Q 0; (c) A�1/4 q 0
and B�1/4 Q 0; (d) A�1/4 Q 0 and B�1/4 q 0; (e) A�1/4 =0 and B�1/4 q 0; (f ) A�1/4 q 0 and B�1/4 q 0. See also the caption
of Figure 1.

Figures 10 and 11, respectively, show the approximation saddle-node bifurcation sets
in the (V, =G =)-space and associated bifurcation diagrams for the averaged system (63).
Here G6

1/4 =− 1
64 (a1 A�1/4 d2/B�1/4 C�2

1/4) and V3
1/4 = 27

4096 (a2
1 A�5

1/4 d4/B�2
1/4 C�4

1/4). Thus, when ḡ is
increased, fourth-order superharmonics are created at a supercritical saddle-node
bifurcation and annihilated at a subcritical saddle-node bifurcation like third- or
lower-order superharmonics near the associated resonances, but the bifurcation set
structure is a little different from those near third- or lower-order superharmonic
resonances (cf. reference [1]). The phase portraits of the averaged system (62) drawn by
the software ‘‘Dynamics’’ are also shown in Figure 12.

Figure 11. Bifurcation diagrams for the averaged system (63) when the control parameter is =G=. (a) A�1/4 Q 0,
B�1/4 Q 0, Vq 0, or A�1/4 q 0, B�1/4 q 0, VQ 0; (b) one of the following four conditions holds: (i) A�1/4 e 0, B�1/4 Q 0,
Vq 0; (ii) A�1/4 E 0, B�1/4 q 0, VQ 0; (iii) A�1/4 q 0, B�1/4 Q 0, VQV1/4; (iv) A�1/4 E 0, B�1/4 q 0, VqV1/4; (c) A�1/4 q 0,
B�1/4 Q 0, V1/4 QVQ 0 or A�1/4 Q 0, B�1/4 q 0, 0QVQV1/4. The points with rq 0 correspond to fourth-order
superharmonics in equation (1). See also the caption of Figure 2.
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Figure 12. Phase portraits of the averaged system (62) for A1/4 =37/281 1·32142857, B1/4 =3/4(=0·75),
C1/4 =285/112(=2·54464286), V=−15 and dv=z2/41 0·35355339. (a) G=−0·5; (b) G=−1·1; (c)
G=−1·5. These parameter values are included in the cases of Figures 10(f ) and 11(a). When G is increased,
a supercritical saddle-node bifurcation occurs at G1 0·72756049 and a subcritical saddle-node bifurcation occurs
at G1 1·3203928. See also the caption of Figure 3.

6. AN EXAMPLE

To illustrate the above theoretical results, the Duffing oscillator with double well
potential,

ẍ+ d�ẋ− x+ x3 = ḡ cos vt, (75)

i.e., the case of f(x)=−x+ x3, is studied as an example. The unperturbed system has two
centers at (x, ẋ)= (21, 0). The third- or lower-order subharmonic and superharmonic
resonance motions near the centers in equation (75) as well as the primary resonance
motions were discussed in a similar fashion by using the second-order averaging method
in reference [1].

For the two centers one has a1 =2, a2 =23, a3 =1 and aj =0, je 4. So the values of
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T 1

The values of A�k/l , B�k/l and C�k/l for the centers (x, ẋ)= (21, 0)
in equation (75)

(k, l) A�k/l B�k/l C�k/l

(3, 2) 171
14

9
2 2945

64

(2, 3) 59
16 2 31315

2688

(4, 1) 9 12 215
2

(1, 4) 37
28

3
4 2285

112

the parameters A�k/l , B�k/l and C�k/l , defined by equations (34), (49), (61) and (73), are
computed from these values. See Table 1 for the parameter values.

Figure 13 shows the approximate saddle-node and period-doubling bifurcation sets near
the unperturbed centers, obtained by the above third-order averaging analyses of sections
3–5, in the (v, ḡ)-space. The bifurcation sets near the ultra-subharmonic resonances of

Figure 13. Bifurcation sets near the unperturbed centers in equation (75) when the control parameters are ḡ
and v. (a) Saddle-node bifurcations near the ultra-subharmonic resonance of order 3/2; (b) saddle-node and
period-doubling bifurcations near the ultra-subharmonic resonance of order 2/3; (c) saddle-node bifurcations
near the fourth-order subharmonic resonance; (d) saddle-node bifurcations near the fourth-order superharmonic
resonance. Bifurcation sets predicted by the third-order averaging theory are shown as solid lines, and numerically
computed bifurcation sets are shown as broken lines. See also the captions of Figures 1 and 4.
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Figure 14. Phase portraits of the Poincaré map P of equation (75) for d�=0·1. (a) ḡ=0·15 and v=2·07; (b)
ḡ=0·15 and v=0·907; (c) ḡ=0·185 and v=0·907; (d) ḡ=2 and v=5·57; (e) ḡ=0·2 and v=0·34. The dots
(W) represent stable fixed points or periodic orbits of P. These pictures should be compared with Figures 3(b),
6(b), 6(c), 9(b) and 12(b).
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order 3/2 and 2/3 are drawn in Figure 13(a) and (b), respectively, and the bifurcation sets
near the fourth-order subharmonic and superharmonic resonances are drawn in
Figure 13(c) and (d), respectively. These bifurcation curves were computed for o=0·1 and
d=1 (i.e., d�=0·001). Condition (74) was used in Figure 13(d). For the purpose of
comparison, the corresponding numerical simulation results for equation (75) are also
plotted as the broken curves. Here a software called ‘‘AUTO’’ [17] was used to obtain these
numerical results. The theoretical predictions are qualitatively in good agreement with the
numerical simulation results. It should also be remarked that more accurate theoretical
predictions can be obtained if the fourth- or higher-order averaging procedure is used. See
reference [8].

Figure 14 shows some numerically computed phase portraits of the Poincaré map P for
equation (75), defined as

P : (x(0), ẋ(0)):(x(T), ẋ(T)), (76)

where x(t) represents a solution of equation (75) and T=2p/v is the forcing period.
Again, the software ‘‘Dynamics’’ was used here. Thus, the phase portraits of the Poincaré
map near the unperturbed centers are very similar to those of the associated averaged
systems (see Figures 3(b), 6(b), 6(c), 9(b) and 12(b)) while the periodic orbits of the
Poincaré map correspond to fixed points of the averaged systems.

7. CONCLUSIONS

In this paper periodically forced non-linear oscillators of the general form (1) have been
studied by applying the third-order averaging method. The ultra-subharmonic resonance
motions of order 3/2 and 2/3 near the unperturbed centers were theoretically described.
The necessary tedious computations were implemented by using the package of the
computer algebra system, Mathematica, recently developed by the author and his
co-worker [8]. Several types of bifurcations at which the ultra-subharmonic orbits are
created or annihilated were detected. Moreover, the fourth-order subharmonic and
superharmonic resonance behavior was discussed. To illustrate the theoretical results, an
example was presented for the Duffing oscillator with double well potential. Numerical
simulation results were also given and their good agreement with the theoretical
predictions was found.

Here special cases of subharmonic, superharmonic and ultra-subharmonic resonances
were considered and the third-order averaging method was applied. However, the
higher-order averaging method will also reveal other subharmonic, superharmonic and
ultra-subharmonic resonance motions, which are found in appropriate numerical
simulations as pointed out in section 1, if fourth- or higher-order averaging is carried out.
Thus, one may be able to obtain theoretical explanations for complicated dynamical
behavior in simple non-linear oscillators.

Our results are valid for a large class of periodically forced oscillators, including weakly
non-linear oscillators of the type (2). This implies, along with the results of reference [1],
that there exist common bifurcation structures near the ultra-subharmonic resonances as
well as the higher-order subharmonic and superharmonic resonances in different systems
of the form (1) or (2). In fact, it was shown by numerical computations and experimental
measurements that some different systems were proven to have the same bifurcation
structures near the primary and subharmonic resonances predicted by the second-order
averaging analyses (see references [1, 18]). Hence, numerical or experimental evidence for
the above conjecture is expected.
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APPENDIX

The functions wij (u) in equation (24) are given as follows:

w10 =0−9a2 G2

8v2 cos 2u+
9a2 G2

32v2 cos 4u−
9a2 G2

64v2 cos 8u,

9a2 G
2

8v2 sin 2u+
9a2 G2

32v2 sin 4u+
9a2 G2

64v2 sin 8u1
T

, (A1)

w11 =09a2 G

4v2 cos u+
9a2 G

28v2 cos 7u, −
9a2 G

4v2 sin u−
3a2 G

2v2 sin 3u−
9a2 G

28v2 sin 7u1
T

,

(A2)

w12 (u)=0−9a2 G

4v2 sin u+
3a2 G

2v2 sin 3u−
9a2 G

28v2 sin 7u, −
9a2 G

4v2 cos u−
9a2 G

28v2 cos 7u1
T

,

(A3)
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w13 (u)=0− 9a2

16v2 cos 2u−
3a2

16v2 cos 6u,
27a2

16v2 sin 2u+
3a2

16v2 sin 6u1
T

, (A4)

w14 (u)=0−27a2

16v2 cos 2u+
3a2

16v2 cos 6u,
9a2

16v2 sin 2u−
3a2

16v2 sin 6u1
T

, (A5)

w15 (u)=0−9a2

8v2 sin 2u+
3a2

8v2 sin 6u,
9a2

8v2 cos 2u+
3a2

8v2 cos 6u1
T

, (A6)

w20 (u)=0$19737a2
2 G3

1792v4 −
27a3 G3

8v2 % cos u−$2565a2
2 G3

1792v4 −
27a3 G3

40v2 % cos 5u

+$783a2
2 G3

1792v4 −
9a3 G3

56v2 % cos 7u+$1431a2
2 G3

19712v4 +
9a3 G3

88v2 % cos 11u,

$19737a2
2 G3

1792v4 −
27a3 G3

8v2 % sin u+$2565a2
2 G3

1792v4 −
27a3 G3

40v2 % sin 5u

+$783a2
2 G3

1792v4 −
9a3 G3

56v2 % sin 7u−$1431a2
2 G3

19712v4 +
9a3 G3

88v2 % sin 11u1
T

, (A7)

w21 (u)=0−$3159a2
2 G2

512v4 −
27a3 G2

16v2 % cos 2u+$837a2
2 G2

224v4 −
27a3 G2

16v2 +
9V

8v2% cos 4u

−$1107a2
2 G2

3584v4 +
27a3 G2

80v2 % cos 10u,

−$3159a2
2 G2

512v4 −
27a3 G2

16v2 % sin 2u−$837a2
2 G2

224v4 −
27a3 G2

16v2 +
9V

8v2% sin 4u

−$4779a2
2 G2

1792v4 −
9a3 G2

8v2 % sin 6u+$1107a2
2 G2

3584v4 +
27a3 G2

80v2 % sin 10u1
T

, (A8)

w22 (u)=0−$3159a2
2 G2

512v4 −
27a3 G2

16v2 % sin 2u−$837a2
2 G2

224v4 −
27a3 G2

16v2 +
9V

8v2% sin 4u

+$4779a2
2 G2

1792v4 −
9a3 G2

8v2 % sin 6u+$1107a2
2 G2

3584v4 +
27a3 G2

80v2 % sin 10u,

$3159a2
2 G2

512v4 −
27a3 G2

16v2 % cos 2u−$837a2
2 G2

224v4 −
27a3 G2

16v2 +
9V

8v2% cos 4u
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+$1107a2
2 G2

3584v4 +
27a3 G2

80v2 % cos 10u1
T

, (A9)

w23 (u)=0$2349a2
2 G

224v4 −
27a3 G

8v2 % cos u−$81a2
2 G

32v4 −
9a3 G

8v2 % cos 3u

−$297a2
2 G

224v4 −
27a3 G

40v2 % cos 5u+$99a2
2 G

224v4 +
3a3 G

8v2 % cos 9u,

$7047a2
2 G

224v4 −
81a3 G

8v2 % sin u+$81a2
2 G

32v4 −
9a3 G

8v2 % sin 3u

+$891a2
2 G

224v4 −
81a3 G

40v2 % sin 5u−$99a2
2 G

224v4 +
3a3 G

8v2 % sin 9u1
T

, (A10)

w24 (u)=0$7047a2
2 G

224v4 −
81a3 G

8v2 % cos u+$81a2
2 G

32v4 −
9a3 G

8v2 % cos 3u

−$891a2
2 G

224v4 −
81a3 G

40v2 % cos 5u−$99a2
2 G

224v4 +
3a3 G

8v2 % cos 9u,

$2349a2
2 G

224v4 −
27a3 G

8v2 % sin u−$81a2
2 G

32v4 −
9a3 G

8v2 % sin 3u

+$297a2
2 G

224v4 −
27a3 G

40v2 % sin 5u+$99a2
2 G

224v4 +
3a3 G

8v2 % sin 9u1
T

, (A11)

w25 (u)=0$−2349a2
2 G

112v4 +
27a3 G

4v2 % sin u+$81a2
2 G

16v4 −
9a3 G

4v2 % sin 3u

−$297a2
2 G

112v2 −
27a3 G

20v2 % sin 5u−$99a2
2 G

112v4 +
3a3 G

4v2 % sin 9u,

−$2349a2
2 G

112v4 −
27a3 G

4v2 % cos u+$81a2
2 G

16v4 −
9a3 G

4v2 % cos 3u

+$297a2
2 G

112v4 −
27a3 G

20v2 % cos 5u−$99a2
2 G

112v4 +
3a3 G

4v2 % cos 9u1
T

, (A12)

w26 (u)=0$27a2
2

32v4 −
9a3

16v2% cos 4u−$ 27a2
2

128v4 +
9a3

64v2% cos 8u,
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−$27a2
2

16v4 −
9a3

8v2% sin 4u+$ 27a2
2

128v4 +
9a3

64v2% sin 8u1
T

, (A13)

w27 (u)=0−$27a2
2

16v4 −
9a3

8v2% sin 4u−$ 27a2
2

128v4 +
9a3

64v2% sin 8u,

−$27a2
2

32v4 −
9a3

16v2% cos 4u−$ 27a2
2

128v4 +
9a3

64v2% cos 8u1
T

, (A14)

w28 (u)=0$ 81a2
2

128v4 +
27a3

64v2% sin 8u, −$81a2
2

32v4 −
27a3

16v2% cos 4u

+$ 81a2
2

128v4 +
27a3

64v2% cos 8u1
T

, (A15)

w29 (u)=0$81a2
2

32v4 −
27a3

16v2% cos 4u+$ 81a2
2

128v4 +
27a3

64v2% cos 8u,

−$ 81a2
2

128v4 +
27a3

64v2% sin 8u1
T

, (A16)

where the superscript T represents the transpose operator.


